Search results for "Stellar nucleosynthesis"
showing 6 items of 6 documents
Nuclear physics far from stability and explosive nucleosynthesis processes
1998
In this paper, we discuss the astrophysically relevant nuclear-physics input for a selected set of explosive nucleosynthesis scenarios leading to rapid protonand neutron-capture processes. Observables (like,e.g., luminosity curves or abundance distributions) witness the interplay between nuclear-structure aspects far from β-stability and the appropriate astrophysical environments, and can give guidance to and constraints on stellar conditions and/or key features of reaction and decay data for radioactive isotopes.
The Nuclear astrophysics program at n_TOF (CERN)
2017
An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…
Mass Spectrometry Using Paul Traps
2009
Mass is one of the basic quantities to characterize any material object, whether an atom, molecule, nucleus, or elementary particle. The measurement of mass therefore serves to detect and identify atomic, molecular, and nuclear species, and can help determine their structure and binding energy. For example, a precise determination of the mass of a nucleus is of importance through its binding energy, not only for various aspects of nuclear physics but also for other branches of physics, e.g. tests of the weak interaction, of quantum electrodynamics, and of the standard model [46]. Also in astrophysics the masses of unstable isotopes involved in stellar nucleosynthesis, especially the r proce…
Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste
2016
Neutron-induced reaction cross sections play an important role in a wide variety of research fields, ranging from stellar nucleosynthesis, the investigation of nuclear level density studies, to applications of nuclear technology, including the transmutation of nuclear waste, accelerator-driven systems, and nuclear fuel cycle investigations. Simulations of nuclear technology applications largely rely on evaluated nuclear data libraries. These libraries are based both on experimental data and theoretical models. An outline of experimental nuclear data activities at CERN’s neutron time-of-flight facility, n_TOF, will be presented.
Chemical Cartography with APOGEE: Multi-element Abundance Ratios
2019
We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance |Z|= 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] vs. [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the lo…
Properties of the 12C 10 MeV state determined through β-decay
2005
16 pages, 1 table, 10 figures.-- PACS nrs.: 23.40.-s; 26.20.+f; 27.20.+n.-- Printed version published Oct 3, 2005.